Reactive oxygen species mediate high glucose-induced plasminogen activator inhibitor-1 up-regulation in mesangial cells and in diabetic kidney.

نویسندگان

  • Eun Ah Lee
  • Ji Yeon Seo
  • Zongpei Jiang
  • Mi Ra Yu
  • Min Kyung Kwon
  • Hunjoo Ha
  • Hi Bahl Lee
چکیده

BACKGROUND Plasminogen activator inhibitor-1 (PAI-1) plays an important role in remodeling of extracellular matrix (ECM) in the glomeruli. PAI-1 is up-regulated by high glucose and is overexpressed in diabetic kidney. Since reactive oxygen species (ROS) mediate ECM accumulation in diabetic glomeruli and was recently found to mediate transforming growth factor-beta1 (TGF-beta1)-induced PAI-1 up-regulation in glomerular mesangial cells, we examined the role of ROS in high glucose-induced PAI-1 expression in cultured glomerular mesangial cells and in streptozotocin-induced diabetic rat glomeruli. METHODS Growth arrested and synchronized primary rat mesangial cells were treated with different concentrations of glucose in the presence or absence of N-acetylcysteine (NAC) or trolox, or after cellular reduced form of glutathione (GSH) depleted with DL-buthionine-(S,R)-sulfoximine (BSO). Taurine was administered to diabetic rats from 2 days to 4 weeks after streptozotocin injection. Urinary protein excretion, glomerular volume, and fractional mesangial area were measured as markers of renal injury and lipid peroxide (LPO) as an oxidative stress marker. PAI-1 mRNA expression was measured by Northern blot analysis in mesangial cells and reverse transcription-polymerase chain reaction (RT-PCR) in glomeruli, PAI-1 protein by Western blot analysis and enzyme-linked immunosorbent assay (ELISA), and plasmin activity by fluorometry. RESULTS High glucose significantly increased PAI-1 mRNA and protein expression and decreased plasmin activity in mesangial cells. Equimolar concentrations of l-glucose or mannitol did not affect PAI-1 expression. BSO pretreatment significantly increased basal PAI-1 expression and amplified the response to high glucose. NAC effectively inhibited high glucose-induced, but not basal, PAI-1 expression. Reduced plasmin activity in mesangial cells by high glucose was rescued by antioxidants. Anti-TGF-beta antibody inhibited both high glucose- and H(2)O(2)-induced PAI-1 up-regulation. Taurine significantly reduced plasma LPO, glomerular PAI-1 expression, glomerular volume, fractional mesangial area, and proteinuria in streptozotocin-induced diabetic rats. CONCLUSION These results demonstrate that ROS mediate high glucose-induced up-regulation of PAI-1 expression in cultured mesangial cells and in diabetic glomeruli. Since both high glucose and TGF-beta1 induce cellular ROS and ROS mediate both high glucose- and TGF-beta1-induced PAI-1, ROS appear to amplify TGF-beta1 signaling in high glucose-induced PAI-1 up-regulation. Antioxidants can prevent accumulation of ECM protein in diabetic glomeruli partly by abrogating up-regulation of PAI-1 and suppression of plasmin activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O-linked β-N-acetylglucosamine supports p38 MAPK activation by high glucose in glomerular mesangial cells.

Hyperglycemia augments flux through the hexosamine biosynthetic pathway and subsequent O-linkage of single β-N-acetyl-d-glucosamine moieties to serine and threonine residues on cytoplasmic and nuclear proteins (O-GlcNAcylation). Perturbations in this posttranslational modification have been proposed to promote glomerular matrix accumulation in diabetic nephropathy, but clear evidence and mechan...

متن کامل

Aldosterone up-regulates production of plasminogen activator inhibitor-1 by renal mesangial cells.

In vivo studies have demonstrated that aldosterone is an independent contributor to glomerulosclerosis. In the present study, we have investigated whether aldosterone itself mediated glomerulosclerosis, as angiotensin II (Ang II) did, by inducing cultured renal mesangial cells to produce plasminogen activator inhibitor-1 (PAI-1), and whether these effects were mediated by aldosterone-induced in...

متن کامل

Reactive oxygen species-regulated signaling pathways in diabetic nephropathy.

Diabetic nephropathy is characterized by excessive deposition of extracellular matrix (ECM) in the kidney. TGF-beta1 has been identified as the key mediator of ECM accumulation in diabetic kidney. High glucose induces TGF-beta1 in glomerular mesangial and tubular epithelial cells and in diabetic kidney. Antioxidants inhibit high glucose-induced TGF-beta1 and ECM expression in glomerular mesangi...

متن کامل

Reactive oxygen species, PKC- 1, and PKC- mediate high-glucose-induced vascular endothelial growth factor expression in mesangial cells

Xia L, Wang H, Munk S, Frecker H, Goldberg HJ, Fantus IG, Whiteside CI. Reactive oxygen species, PKC1, and PKCmediate high-glucose-induced vascular endothelial growth factor expression in mesangial cells. Am J Physiol Endocrinol Metab 293: E1280–E1288, 2007. First published August 21, 2007; doi:10.1152/ajpendo.00223.2007.—Vascular endothelial growth factor (VEGF) is implicated in the developmen...

متن کامل

HIF-1 Mediates Renal Fibrosis in OVE26 Type 1 Diabetic Mice

Hypoxia-inducible factor (HIF)-1 mediates hypoxia- and chronic kidney disease-induced fibrotic events. Here, we assessed whether HIF-1 blockade attenuates the manifestations of diabetic nephropathy in a type 1 diabetic animal model, OVE26. YC-1 [3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole], an HIF-1 inhibitor, reduced whole kidney glomerular hypertrophy, mesangial matrix expansion, extracel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Kidney international

دوره 67 5  شماره 

صفحات  -

تاریخ انتشار 2005